
19

Creating a BIA workflow and adding it to a

BIAFLOWS instance

Introduction

BIAFLOWS workflows are Docker images encapsulating a complete execution environment
together with a workflow addressing a BIA Problem. These Docker images can be compiled
automatically online. BIAFLOWS instances automatically fetch new workflows and make
them available from the user interface. Sample workflows running in ImageJ (macros and
scripts), ICY, CellProfiler, ilastik, Vaa3D, Python, Octave and Jupyter notebooks can be
found in this GitHub repository: https://github.com/neubias-wg5. The procedure to package
a workflow and add it to a BIAFLOWS instance is described in this section. Users willing to
get help can write to https://forum.image.sc forum or contact biaflows@neubias.org.

BIA workflow requirements

BIAFLOWS workflows must:

 Run headless from command line
 Take an input folder of 8 bit/16 bit TIFF (2D) or single file OME-TIFF (C,Z,T) images
 Expose functional parameters and parse them from command line call
 Export results to an output folder in a format specified for the Problem Class (see

Problem Class, ground truth annotations and reported metrics).

The workflow and its software execution environment are fully defined from a set of 4 files:

● A Dockerfile configuring software execution environment (OS, libraries, software...)
● The workflow executable or, more commonly, a script running on a BIA platform
● A Python script (wrapper.py), sequencing operations (Docker image entry point)
● A descriptor (descriptor.json) specifying workflow parameters and default values.

Step 1. Create a workflow GitHub repository

Create a workflow repository in a GitHub source trusted by the BIAFLOWS instance you
plan to add the workflow to. The names of workflow repositories should start by a fixed
prefix (W_ recommended since it is the convention used by BIAFLOWS online instance)
and hold no space.

Step 2. Add the 4 required files to the workflow repository

It is recommended to reuse existing files from similar workflow repositories in
https://github.com/Neubias-WG5. For this, follow these guidelines:

- A descriptor from the Problem Class you target (e.g. Object Segmentation)

- A DockerFile configuring the BIA platform you target (e.g ImageJ)

- A wrapper script from the Problem Class and the workflow type you target.

https://github.com/neubias-wg5
https://forum.image.sc/
mailto:biaflows@neubias.org
https://github.com/Neubias-WG5

20

Note: The flag is_2d should be used to specify if the images are strictly 2d or
multidimensional.

The following workflow types have already been tested and are available from
https://github.com/Neubias-WG5: ImageJ / FIJI macro, ImageJ Python script, ICY protocol,
CellProfiler pipeline, Octave script, ilastik pipeline, Vaa3D plugin, Python 2.X or 3.X script
based on Scikit-learn or KEras/Pytorch.

Step 3. Update the following sections of the Descriptor

Workflow and associated Docker image names

Update name to match GitHub workflow repository name (without prefix)
Update image to match the name of your workflow GitHub repository (lower case only)

Command line call of the Docker image

Description: Update workflow description
Command-line: Update parameter list (here last 3 arguments)

Workflow parameter sections

Update / add as many parameter sections as required to match the parameter list from
command line call.

id: should match parameter name in command line call (lower case)
name: name that will appear in BIAFLOWS user interface (parameter dialog box)
description: context help in BIAFLOWS user interface (parameter dialog box)
type: String or Number
default-value: the default value in BIAFLOWS user interface (parameter dialog box).

https://github.com/Neubias-WG5

21

Step 4. Update DockerFile

Update the line copying the workflow from the GitHub repository to the workflow Docker
image, for instance:

ADD NucleiTracking.ijm /fiji/macros/macro.ijm

If necessary, append commands to install additional required libraries/plugins to the
execution environment.

Step 5. Update wrapper script

Update workflow command line call in wrapper.py.

Update/add parameters to match parameters defined in JSON descriptor (Step 2).

Step 6. Adapt your workflow script

Adapt your workflow script to fulfil workflow requirements and parse parameters from
command line. For instance for an ImageJ macro:

Step 7. Create Docker image in DockerHub

Sign in to DockerHub and create a new public repository. The repository name must match
the container-image name used in Step 3.

22

Step 8. Link repository to workflow GitHub repository and configure workflow Docker image
automated build according to the following example:

Step 9. Trigger a workflow release

Trigger a release from GitHub workflow repository with version tag such as 0.1, 0.2, 1.0...

Step 10. Workflow Docker image build

Check from DockerHub that the workflow Docker image has built successfully. If not, parse
the log and fix issues by modifying DockerFile and retriggering a new release.

Step 11. Add workflow to BIAFLOWS problem

Once the Docker image is built, a BIAFLOWS instance fetches the image from the trusted
source and make it available (possibly after up to 5/10 minutes). Sign in as administrator to
BIAFLOWS and browse to the Problem you want to add the workflow to. Then, click on the
Configuration icon (bottom left of the side bar).

Search for the workflow (recently added workflows are on top of the list) and enable it.
Older workflow versions can be disabled if this is an update to an existing workflow.

23

Step 12. Run the workflow

Test the workflow by running it from BIAFLOWS / Workflow runs (requires execution
rights).

 If execution fails, read the execution log, update the code and trigger a new release.

